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What can we learn about latent 3D scenes from observations?

Vision: Learn rich representations just by watching video!
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Doesn’t capture 3D properties of scenes.

Trained on ~2500 shapenet cars with 50 observations each.

Need 3D inductive bias!
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• Memory inefficient: ! "# .
• Doesn’t parameterize scene surfaces smoothly.
• Generalization is hard.
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Model scene as function Φ that maps coordinates to features.
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Scene Representation Network parameterizes Φ as MLP.
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Scene Representation Network parameterizes Φ as MLP.

Φ:ℝ $→ ℝ&

Scene 
Representation 

Network
Can sample anywhere,
at arbitrary resolutions.

Parameterizes scene 
surfaces smoothly.

Memory scales with scene 
complexity.
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Neural Renderer Step 1: Intersection Testing.
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Idea: march along ray until arrived at surface.
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Neural Renderer Step 1: Intersection Testing.
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Neural Renderer Step 1: Intersection Testing.
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Neural Renderer Step 1: Intersection Testing.



Neural Renderer Step 2: Color Generation
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Can now train end-to-end with posed images only!
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Generalizing across a class of scenes



Each scene represented by its own SRN.
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Each scene represented by its own SRN.
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Each scene represented by its own SRN.

Represent each scene with 
low-dimensional embedding 
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Each scene represented by its own SRN.
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SRNs

Tatarchenko et al.

Deterministic
GQN

Worrall et al.

Novel View Synthesis – Baseline Comparison
Shapenet v2 – single-shot reconstruction of objects in held-out test set

SRNs (Ours)

Tatarchenko et al.
2015

Deterministic 
GQN, adapted

Eslami et al. 
2018

Worrall et al.
2017

Training
§ Shapenet cars / chairs.
§ 50 observations per object.

Testing
• Cars / chairs from unseen 

test set
• Single observation!

Input pose



Novel View Synthesis – SRN Output
Shapenet v2 – single-shot reconstruction of objects in held-out test set
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Sampling at arbitrary resolutions
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Generalization to unseen camera poses
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Generalization to unseen camera poses

Camera RollCamera close-up

Doesn’t reconstruct 
geometry

Doesn’t reconstruct 
geometry

SRNs

Tatarchenko et al.
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Latent code interpolation
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Can represent room-scale scenes, but aren’t compositional.

Training set novel-view synthesis on 
GQN rooms (Eslami et al. 2018) with 

Shapenet cars, 50 observations.

Work-in-progress: Compositional SRNs 
generalize to unseen numbers of objects!
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